منابع مشابه
Edge-colorings avoiding rainbow and monochromatic subgraphs
For two graphs G and H , let the mixed anti-Ramsey numbers, maxR(n; G, H), (minR(n; G, H)) be the maximum (minimum) number of colors used in an edge-coloring of a complete graph with n vertices having no monochromatic subgraph isomorphic to G and no totally multicolored (rainbow) subgraph isomorphic to H . These two numbers generalize the classical anti-Ramsey and Ramsey numbers, respectively. ...
متن کاملAvoiding Rainbow Induced Subgraphs in Vertex-Colorings
For a fixed graph H on k vertices, and a graph G on at least k vertices, we write G −→ H if in any vertex-coloring of G with k colors, there is an induced subgraph isomorphic to H whose vertices have distinct colors. In other words, if G −→ H then a totally multicolored induced copy of H is unavoidable in any vertex-coloring of G with k colors. In this paper, we show that, with a few notable ex...
متن کاملAvoiding rainbow induced subgraphs in edge-colorings
Let H be a fixed graph on k vertices. For an edge-coloring c of H , we say that H is rainbow, or totally multicolored if c assigns distinct colors to all edges of H . We show, that it is easy to avoid rainbow induced graphs H . Specifically, we prove that for any graph H (with some notable exceptions), and for any graphs G, G 6= H , there is an edge-coloring of G with k colors which contains no...
متن کاملFinding 2-edge connected spanning subgraphs
This paper studies the NP-hard problem of /nding a minimum size 2-edge connected spanning subgraph (2-ECSS). An algorithm is given that on an r-edge connected input graph G=(V; E) /nds a 2-ECSS of size at most |V |+(|E|−|V |)=(r−1). For r-regular, r-edge connected input graphs for r = 3, 4, 5 and 6, this gives approximation guarantees of 4 ; 4 3 ; 11 8 and 7 5 , respectively. c © 2003 Elsevier ...
متن کاملConnecting Terminals and 2-Disjoint Connected Subgraphs
Given a graph G = (V,E) and a set of terminal vertices T we say that a superset S of T is T -connecting if S induces a connected graph, and S is minimal if no strict subset of S is T -connecting. In this paper we prove that there are at most (|V \T | |T |−2 ) · 3 |V \T | 3 minimal T -connecting sets when |T | ≤ n/3 and that these can be enumerated within a polynomial factor of this bound. This ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Open Mathematics
سال: 2017
ISSN: 2391-5455
DOI: 10.1515/math-2017-0035